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Abstract

Geometric structures underlying commutative and noncommutative integrable dynamics are ana-
lyzed. They lead to a new characterization of noncommutative integrability in terms of spectral
properties and of Nijenhuis torsion of an invariant (1,1) tensor field. The construction of compatible
symplectic structures is also discussed. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last few decades there has been a renewed interest in completely integrable Hamilto-
nian systems, whose concept goes back to the last century [25,26] and which, loosely speak-
ing, are dynamical systems admitting a Hamiltonian description and possessing sufficiently
many constants of motion, so that they can be integrated by quadratures. Some qualitative
features of these systems remain true in some special classes of infinite-dimensional Hamil-
tonian systems expressed by nonlinear evolution equations as, for instance, Korteweg–de
Vries and sine-Gordon [36].
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A relevant progress in the study of these systems with an infinite-dimensional phase
manifoldMwas the introduction of theLax representation[23] which played an important
role in formulating theinverse scattering method, universally recognized as one of the most
remarkable result of theoretical physics in last decades, and of theAKNS scheme[1]. This
method allows the integration of nonlinear dynamics, both with finitely or infinitely many
degrees of freedom, for which a Lax representation can be given [17], this being both of
physical and mathematical relevance [34].

Most of the evolution equations admitting a Lax representation are generally Hamiltonian
dynamics on infinite-dimensionalweakly symplecticmanifolds so that the natural arena, for
the analysis of their integrability, is represented by the phase space with its natural symplectic
structure. In terms of this structure the scattering data associated to the Lax operator has a
natural interpretation asaction–angletype variables [38].

A further progress, in the analysis of the integrability, was the important remark that
many of the previous systems are Hamiltonian dynamics with respect to twocompati-
ble symplectic structures [18,27,28,36], this leading to a geometrical interpretation of the
so-calledrecursion operator[23].

This fact suggested that the integrability of nonlinear field theories could be naturally
explained in terms of mixed tensor fields, whose relation [23] with Lax operators is still
[10,11] unclear.

As a matter of fact, a description of integrability [10,13,14,16,21,24,28], which does not
depend in a crucial way on dimensionality, and so works both for systems with finitely many
degrees of freedom and for field theory can be given in terms of invariant mixed tensor field,
having bidimensional eigenspaces and vanishing Nijenhuis torsion [33].

The analysis of the integrability realized with the help of such tensor field leads to the
formulation of an integrability criterion [10,13,14,24] which, for finite-dimensional systems,
is essentiallyequivalent to the classic Liouville theorem.

To be more specific, the mentionedessential equivalencemeans that the equivalence
holds fornonresonantHamiltonian systems, i.e. for completely integrable dynamics whose
Hamiltonian expressed in action–angle coordinates has a nonvanishing Hessian.

One reason for a completely integrable Hamiltonian system to be resonant may be that
the number of first integrals, defined on the entire phase space, is larger than one half of the
phase space dimension (of course, in this case not all the integrals are in involution and one
will have to deal with noncommuting sets of first integrals). This happens for the Kepler
dynamics which, however, is bi-Hamiltonian and has a recursion operator with the right
properties [29].

More in general, the analysis of symmetries [20] shows that generally one is faced with
a non-Abelian algebra corresponding, for Hamiltonian systems, to a non-Abelian algebra
of first integrals.

The integrability of such systems with finitely many degrees of freedom has been analyzed
in several papers [31]. There exist field dynamics, related to vector and matrix nonlinear
Schroedinger equation [19,22], possessing a noncommutative set of first integrals so that
it would be useful to have a noncommutative integrability criterion formulated in terms
of a recursion operator. In this paper such a criterion is presented. More specifically, in
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Section 2 integrability criteria for the commutative case are recalled. Section 3 is devoted
to noncommutative integrability. After a review of known results a new noncommutative
integrability criterion is presented. The Kepler dynamics is discussed as an example.

2. Commutative integrability criteria

The best known criterion of integrability goes back to the celebrated Liouville theorem
[25,26] and can be reported [2,3,5,30,35] as follows.

Theorem 1. If on a 2n-dimensional symplectic manifoldM are defined a Hamiltonian
dynamics and n functionally independent of first integralsf1, . . . , fn in involution

{fi, fj } = 0 ∀i, j = 1, . . . , n,

whose associated Hamiltonian fieldsXi are complete, then the level manifolds

Mf (π) = {p ∈M : fi(p) = πi, i = 1, . . . , n}
are invariant with respect to the dynamics and each of their connected components is
diffeomorphic either toT m × Rn−m or, if compact, to a torusT n. Moreover, for every
pointp ∈M near which m is constant, there exists a neighborhoodU invariant under the
composed flow of the vector fieldsXi ,and canonical coordinates(P1, . . . , Pn, Q

1, . . . , Qn),
whereQ1, . . . , Qm are angles, such that the equation of motion takes the form

Ṗi = 0, Q̇i = νi(P ), 1 ≤ i ≤ n.

A more general setting for the commutative integrability is the following [24,37].
LetM be a smooth 2n-dimensional manifold. Let us suppose we can findn vector fields

X1, . . . , Xn, ∈ χ(M) andn functionsf1, . . . , fn ∈ F(M) with the following properties:

[Xi, Xj ] = 0, (1)

LXi
f j = 0, i, j ∈ {1, . . . , n}. (2)

It can be shown that, if on an open dense submanifold ofM,

X1 ∧ · · · ∧ Xn 6= 0, (3)

df 1 ∧ · · · ∧ df n 6= 0, (4)

any dynamical system1 onM which is of the form

1 =
n∑

i=1

νiXi, νi = νi(f 1, . . . , f n), (5)

is completely integrable on the submanifold in which Eqs. (3) and (4) are satisfied.
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If the fieldsXi are complete, by using then-functionsf 1, . . . , f n, a family of symplectic
structures can defined with respect to which the dynamics is Hamiltonian.

In the Liouville theorem [25,26] only the commuting first integrals and the symplectic
structure are given. Of course, the commuting vector fields are constructed from them. An
alternative integrability theorem, suggested by the analysis of integrable models in field
theory, can be formulated [10,13,14] using invariant tensor fields and it reads as follows.

Theorem 2(DMSV). Let1 be a dynamical vector field on a differential manifoldMwhich
admits a(1,1)mixed tensor field T which
• is invariant:

L1T = 0,

• has a vanishing Nijenhuis torsion:

NT = 0,

• is diagonalizable with doubly degenerate eigenvaluesλj whose differentialsdλj are
independent at each point.

Then, the vector field1 is separable, completely integrable and Hamiltonian.

Remark 3. We observe that the Hamiltonian character of the dynamics1 is not assumed a
priori but it follows from the properties of the tensor field T, so that all dynamics, satisfying
the given hypotheses, result to be Liouville integrable. Integrability of dissipative dynamics
can be put in the same setting by assuming[12] different spectral hypotheses for the tensor
field T.

The last formulation has the advantage of being more appropriate to deal with dynamics
with infinitely many degrees of freedom (completely integrable field theories). We also
observe that the Lax representation, the powerful integration tool for such systems, may
not be useful in more than one space dimension since the inverse problem inquantum
mechanicshas been solved only for one-dimensional systems.

2.1. From the Liouville integrability to invariant mixed tensor fields

Let us now study the problem of constructing invariant mixed tensor fields, with the
appropriate properties (also called arecursion tensor field), for a given Liouville’s integrable
Hamiltonian dynamics1. If H is the Hamiltonian function and{·, ·} denotes the Poisson
bracket, we have

1f = {H, f }.
Let us introduce in some neighborhood of a Liouville’s torusT n action–angle coordinates

(J1, . . . , Jn, ϕ
1, . . . , ϕn), in which we have

ω =
∑
h

dJh ∧ dϕh, 1 = ∂H

∂Jh

∂

∂ϕh
.

Let us distinguish two cases.
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1. The HamiltonianH is a separable one:

H =
∑

k

Hk(Jk).

In this case a class of recursion tensor fields can be easily defined

T =
∑
h

λh(Jh)

(
dJh ⊗ ∂

∂Jh

+ dϕh ⊗ ∂

∂ϕh

)

with theλ’s arbitrary and functionally independent. Indeed, the tensor fieldT is invariant
and has vanishing Nijenhuis torsion and doubly degenerate eigenvalues.

2. The Hamiltonian has a nonvanishing Hessian:

det

(
∂2H

∂Jh∂Jk

)
6= 0.

In this case, in the chosen neighborhood, setting

νh(J ) = ∂H

∂Jh

,

new coordinates (ν/ϕ) can be introduced, so that the dynamics can be described with respect
to the new symplectic structure:

ω1 =
∑
h

dνh ∧ dϕh =
∑
hk

∂2H

∂Jh∂Jk

dJk ∧ dϕh

by a separable Hamiltonian function

H1 = 1
2

∑
h

(νh)2.

As before, a class of recursion tensor fields is then given by

T =
∑
h

λh(ν
h)

(
dνh ⊗ ∂

∂νh
+ dϕh ⊗ ∂

∂ϕh

)
.

By means of this construction it is possible to find the second symplectic structure for a
completely integrable Hamiltonian system. It is still an open problem if this is true also
in the remaining cases. In this direction one may find useful hints in [6,7,15]. The next
section is concerned with noncommutative integrable dynamics and, in particular, with
their characterization in terms of an invariant, mixed tensor field.

3. Noncommutative integrability criteria

As it has been observed in Section 1, if the number of independent first integrals is larger
than half the dimension of the symplectic manifold, they cannot be in involution anymore
and one will have to deal with noncommuting sets of first integrals. For a finite number of
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degrees of freedom a noncommutative generalization of Liouville theorem is the following
[4,31].

Theorem 4(MF1). A Hamiltonian vector field on a symplectic manifold(M, ω) having a
noncommutative Lie algebraA of first integrals satisfying the condition

dimA+ rankA = dimM,

where the rank ofA is the maximum of the rank of the matrixmab = {fa, ft }, 1 is com-
pletely integrable, i.e. the joint level surfaces of the first integrals are invariant, and in a
neighborhood of each invariant surface one can define canonical coordinates(λ/χ/p/q),
the χ ’s being the coordinates on the invariant surfaces, such that Hamilton’s equations
take the form

λ̇i = 0, χ̇ i = νi, Ṗα = 0, q̇α = 0, 1 ≤ i ≤ r, r + 1 ≤ α ≤ n

with r = rankA. If these invariant surfaces are compact and connected, one can prove, as
in the commutative case, that they are tori, and theχ ’s can be chosen to be angle variables.
The canonical coordinates are called in this case “generalized action–angle variables”.

The Liouville theorem can be recovered [5] as stated by the following.

Theorem 5(MF2). IfM is compact, then under the hypotheses of Theorem 4, one can find
n = 1

2dimM first integrals which are in involution.

Even in this case, however, the noncommutative theorem, showing the full symmetry
of the system, remains of interest. A full account of the relevant geometrical structures
underlying the noncommutative integrability can be found in [8,9,15,32]. Here we just give
a short review of them.

A symplectic form onM at a pointp defines a skewsymmetric bilinear nondegenerate
form on TpM. If W is a r-dimensional subspace ofTpM, the symplectic orthogonal
subspaceW⊥ ≡ {X ∈ TpM : ω(X, Y ) = 0∀ Y ∈ W } has dimension 2n − r and in
generalW ∩ W⊥ 6= 0.

Two cases are of particular interest:r ≤ n andr ≥ n. If r ≤ n andW ⊆ W⊥, W is
said to beisotropic, and if r ≥ n andW ⊇ W⊥, W is calledcoisotropic. If W is isotropic
and coisotropic (r = n), then it is calledLagrangian. A submanifold is calledisotropic,
coisotropicor Lagrangian if its tangent spaces are isotropic, coisotropic or Lagrangian,
respectively.

In the commutative case the level surfaces of the first integralsfi define an invariant
Lagrangian foliationF1 ofM. The Hamiltonian vector fieldsXi associated to the functions
fi are then a basis of commuting tangent vector fields for the leaves and can be used to
define local coordinatesχi on the leaves. These fields also commute with the Hamiltonian
vector field1 which, consequently, can be expressed as1 = νi(f )Xi . In a neighborhood

1 For semisimple Lie algebras, this definition coincides with the usual one.
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of a pointp ∈ M, the set (χ/f ) defines canonical coordinates and Hamilton’s equations
of motion take the simple following form:

χ̇ i = νi, ḟi = 0.

In the noncommutative case the first integralsfa , 1 ≤ a ≤ 2n−r, still define an invariant
foliation, but the leaves now have dimensionr ≤ n and the Hamiltonian vector fieldsXa ,
associated with the first integralsfa , are not all tangent to the leaves. However, the condition
dimA+ rankA = dimM ensures for each leafl, the existence of a subalgebraAl which
commutes withAonl. The Hamiltonian vector fields̄Xi , associated to a basis ofAl , will give
themselves a basis of tangent vector fields forl and will have the propertyω(X̄i, Xa)|l = 0,
so that each leaf will be isotropic.2 To obtain a set of canonical coordinate, in a neighborhood
of a point ofl and eventually of the whole ofl, one needs to exploit further properties of this
isotropic foliation. At each pointp of l consider the subspaceTpl ⊆ TpM and the resulting
distribution of symplectically orthogonal subspaces(Tpl)⊥. Sinceω(X̄i, Xa)|l = 0, this
distribution is generated for all leaves, by the vector fieldsXa , and, furthermore, sinceXa

satisfy the hypotheses of the Frobenius theorem, we obtain a second coisotropic foliation
F2 whose leaves are themselves foliated by those of the first foliationF1. The regularity
of this foliation follows from the independence of the functionsfa . One can now prove the
existence of canonical coordinates(λi, χ

i, pα, qα), such that the symplectic structure and
the dynamical vector field take the following form:

ω = dλi ∧ dχi + dpα ∧ dqα, 1 = νi(λ)XI ,

so that the equations of motion become

λ̇i = 0, χ̇ i = νi, ṗα = 0, q̇α = 0.

The functionsλi describe locallyF2, and their associated Hamiltonian vector fields
Xi define coordinatesχi onF1. The fieldsXi are independent and, sinceω(Xi, Xα) =
dλi(Xa) = 0, they are tangent to the leaves ofF1, and thus commute among themselves and
with 1. To understand better this canonical coordinate, one can actually observe that the
momentum mapJ :M→ A∗ is defined byJ : x → ξx ∈ A∗, whereξx(f ) ≡ f (x), f ∈
A, defines a fibration of a neighborhoodU of a leaf ofF2 with fiber lx = J−1(ξx), namely
a leaf ofF1. The neighborhoodU can then be represented aslx × S × O, whereO is a
region in the coadjoint orbit throughξx of the Lie group corresponding toA andS is a
linear manifold transverse toO. The symplectic structureω restricted toO coincides with
the Lie–Kirillov–Kostant–Souriau symplectic form;(pα, qα) are canonical coordinates on
O andλi coordinates onS. It has been actually proved [15] that all what is needed for the
existence of such local canonical coordinates is the double foliation, namely thatM has an
isotropic foliation such that the distribution of subspaces, symplectically orthogonal to the
tangent spaces to its leaves, is integrable.

2 In particular,ω(Xi, Xj )|l = 0.
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3.1. Noncommutative integrability and invariant tensor field

Let us give now the following new characterization of noncommutative integrability.

Theorem 6. Let 1 be a dynamical vector field on a 2n-differential manifoldM which
admits a(1,1)mixed tensor field T, which
• is invariant:

L1T = 0,

• is diagonalizable with only simple and doubly degenerate eigenvalues whose differentials
are independent at each pointp ∈M,

• has the property

NT (α, X, Y ) = 0 ∀X : X(p) ∈ S(p), Y ∈ D(M),

and for all 1-formsα, S(p) denoting the sum of eigenspaces associated to the doubly
degenerate eigenvalues ofT (p).

Then, the vector field1 is separable, completely integrable and Hamiltonian.

Let λ1, λ2, . . . , λr be the doubly degenerate eigenvalues andµ2r+1, . . . , µ2n be the sim-
ple ones. Under the hypotheses, the tensor fieldT can be written in the form

T =
r∑

i=1

λi(ei ⊗ ϑi + ei+r ⊗ ϑi+r ) +
2n∑

α=2r+1

µαeα ⊗ ϑα, (6)

where thee’s form a basis of eigenvectors ofT and theϑ ’s are the elements of the dual
basis. Thus,

Tei = λiei, Tei+r = λiei+r , Teα = µαeα, i ≤ r, α ≥ 2r + 1,

T ϑi = λiϑ
i, T ϑi+r = λiϑ

i+r , T ϑα = µαϑα, i ≤ r, α ≥ 2r + 1. (7)

The Nijenhuis torsion [33] ofT , defined by

NT (α, X, Y, ) = 〈α,HT (X, Y )〉 (8)

with

HT (X, Y ) = [TX, TY] + T 2[X, Y ] − T [TX, Y ] − T [X, TY], (9)

once evaluated on the basis vector fields{e1, . . . , e2n}, gives

HT (ei, ej ) = (T − λi)(T − λj )[ei, ej ] + (λi − λj )[(Lei
λj )ej + (Lej

λi)ei ]

HT (ei, eα) = (T − λi)(T − µα)[ei, ej ] + (λi − µα)[(Lei
µα)eα + (Leαλi)ei ],

wherei, j ≤ 2r andα ≥ 2r + 1, so that the conditions on the torsion imply the following
relations:

(T − λi)(T − λj )[ei, ej ] = 0, (λi − λj )ei(λj ) = 0,

(T − λi)(T − µα)[ei, eα] = 0, ei(µα) = eα(λi) = 0. (10)
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It follows that for any three vector fieldsei, ej , eα,

[ei, ej ] = aei + bej + cei+r + dej+r , [ei, eα] = fei + gei+r + heα.

Thus, the two vector fieldsei andei+r , belonging to the same eigenvalueλi , satisfy the
relation

[ei, ei+r ] = ciei + ci+rei+r . (11)

Therefore,∀i ∈ {1, . . . , r}, the vector fieldsei, ei+r are a local basis of a two-dimensional
involutive distribution and, by Frobenius’ theorem, define a two-dimensional submanifold of
M. In other words, they can be chosen so that, on each bi-dimensional manifold, coordinates
ξ i , ηi can be found such that

ei = ∂

∂ξ i
, ei+r = ∂

∂ηi
. (12)

In conclusion, relations (10), which directly follows from the Nijenhuis condition, ensure
the “partial” holonomicity of the basis, in which the tensor fieldT is diagonal.

On the other hand, since

dλi = ϑjej (λi) + ϑαeα(λi) = ϑjej (λi), (13)

we have, by using Eq. (10),

T dλi = T ϑj ej (λi) = ϑjλj ej (λi) = ϑjλiej (λi) = λi dλi. (14)

Moreover,

dµρ ≡ dµρ =
2r∑

k=1

ϑiei(µρ) +
2n∑

α=1

ϑαeα(µρ) =
2n∑

α=1

ϑαeα(µρ).

By means of the above relations, it is now possible to choose a holonomic basis in such a
way thatT has the following expression:

T =
r∑

j=1

λj (ej ⊗ ϑj + er+j ⊗ dλj ) + Cσ
ρ eσ ⊗ dµρ (15)

with

Cσ
ρ =

2n∑
α=2r+1

µαeα(µσ )[eα(µρ)]−1, ϑi = 0.

In addition, in a neighborhood of each bi-dimensional submanifold we can choose coordi-
nates (λ/χ/µ) such that the tensorT can also be written in the form3

T =
r∑

j=1

λj

(
∂

∂λi

⊗ dλi + ∂

∂χi
⊗ dχi

)
+ Cσ

ρ

∂

∂µρ

⊗ dµσ .

3 The symbols used for the coordinates have been chosen just to correspond to the geometric structures previously
described.
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In the chosen basis, the vector field1 can be written as

1 = 3i

∂

∂λi

+ 8i ∂

∂χi
+ Eαeα, (16)

so that the conditionL1T = 0 implies that3i = Eα = 0. It follows that

1 = 8i(λi, χ
i)

∂

∂χi
. (17)

Symplectic structures can be found with respect to which the above vector field is Hamil-
tonian. Indeed, the closed 2-form

ω =
r∑

k=1

Gk(λk, χ
k) dλk ∧ dχk +

2n∑
α,β=2r+1

fαβ(µα, µβ) dµα ∧ dµβ

will be invariant if

∂

∂χi
(Gi8

i) = 0.

The nondegeneracy condition forω is obviously expressed by

det‖fαβ‖
r∏

k=1

Gk 6= 0.

This is equivalent to require that if8i(λi, χ
i) vanishes at some point then it also vanishes on

the whole integral curve of∂/∂χi through that point. If the vector field1 has no singular
points,4 a particularly simple class of symplectic structures with respect to which it is
Hamiltonian is given by

ω =
r∑

k=1

gk(λk)

8k(λk, χk)
dλk ∧ dχk +

2n∑
α,β=2r+1

fαβ(µα, µβ) dµα ∧ dµβ,

wheregk andfαβ are arbitrary functions such that

det‖fαβ‖
r∏

k=1

gk

8k
6= 0.

4 If 8k is identically zero for some indexk, we can define

ω =
∑

i

gi (λi ) dλi ∧ dχi +
∑

j

gj (λj )

8j (λj , χj )
dλj ∧ dχj +

2n∑
α,β=2r+1

fαβ(µα, µβ) dµα ∧ dµβ,

where the sum on the indexi runs over those eigenspaces for which8j = 0. When1 has zeroes but does not
vanish identically, we have to exclude this closed subset from our consideration. These sets will be invariant under
the flow so that our analysis can be carried over in the same fashion as we have done on the complement.
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If the submanifoldµ=constant is compact and connected, we can introduce, as usual,
action–angle coordinates (J, ϕ) so that the vector field1 and the symplectic structureω,
in the coordinates (J, ϕ, µ) take the following form:

1 = 1i(Ji)
∂

∂ϕi
, ω =

r∑
k=1

fk(Jk) dJk ∧ dϕk +
2n∑

α,β=2r+1

fαβ(µα, µβ) dµα ∧ dµβ.

In this case, the family of symplectic structures with respect to which1 is Hamiltonian is
exhaustively described in [6,7,15]. The tensor fieldT can be used to generate compatible
invariant symplectic structures according to

ωT (X, Y ) = ω1(TX, Y ) + ω1(X, TY) + ω2(X, Y )

with

ω1 =
r∑

k=1

fk(Jk) dJk ∧ dϕk, ω2 = 1

2

2n∑
α,β=2r+1

fαβ(µα, µβ) dµα ∧ dµβ.

3.1.1. From noncommutative integrability to invariant tensor fields
Let us suppose that we have a noncommutative integrable system according to Theorem

4. By the integrability analysis, we have the symplectic structureω = dλi ∧dχi +dpα∧dqα

and the equations of motion

λ̇i = 0, χ̇ i = νi, ṗα = 0, q̇α = 0, 1 ≤ i ≤ r, r + 1 ≤ α ≤ n,

or, callingµ the collection of thep’s andq ’s, more simply

λ̇i = 0, χ̇i = νi µ̇α = 0.

It is easily verified that the following tensor field

T =
r∑

j=1

λj

(
∂

∂λi

⊗ dλi + ∂

∂χi
⊗ dχi

)
+ Cσ

ρ (µ)
∂

∂µρ

⊗ dµσ .

is invariant and, for all diagonalizable matrixCσ
ρ (µ) = δσ

ρ µσ , has a vanishing torsion,
provided that the Hamiltonian function is separable in the form

H = K1(λ) + K2(µ)

with

K1(λ) =
r∑

i=1

Hi(λi).

If K1 is not separable but

det

(
∂2K1

∂λj ∂λi

)
6= 0,

the construction of the invariant tensor field follows strictly the lines of Section 2.1.
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This shows that also in the noncommutative case, an invariant torsionless tensor field can
always be found. Of course, such a tensor field always generates, by repeated application,
Abelian algebras of symmetries. Regardless of the vanishing of torsion on the whole space,
the noncommutative features are linked to the nondegenerate eigenvalues and, then, are still
described by the termCσ

ρ (µ)(∂/∂µρ) ⊗ dµσ .

4. Example: the Kepler dynamics

4.1. A recursion operator in the commutative case

The vector field for the Kepler problem, in spherical–polar coordinates, forR3 − {0}, is
globally Hamiltonian with respect to the symplectic form

ω =
∑

i

dpi ∧ dqi, i = r, ϑ, ϕ, (18)

with HamiltonianH given by

H = 1

2m

(
p2

r + p2
ϑ

r2
+ p2

ϕ

r2 sin2ϑ

)
+ V (r), V (r) = −k

r
. (19)

In action–angle coordinates(J, ϕ), the Kepler HamiltonianH , the symplectic formω and
the vector field1 become

H = − mk2

(Jr + Jϑ + Jϕ)2
, ω =

∑
h

dJh ∧ dϕh,

1 = 2mk2

(Jr + Jϑ + Jϕ)3

(
∂

∂ϕ1
+ ∂

∂ϕ2
+ ∂

∂ϕ3

)
. (20)

It has been shown [29] that the vector field1 is globally Hamiltonian also with respect to
the symplectic formω1:

ω1 =
∑
hk

Sh
k dJh ∧ dϕk, (21)

where the matrixS is defined by

S = 1

2

∥∥∥∥∥∥
J1 J2 J3

J2 − J3 J1 + J3 J3

J3 − J2 J2 J1 + J2

∥∥∥∥∥∥ .

We have

1 = {H1, }1, (22)

with HamiltonianH1 given by

H1 = − 2mk2

Jr + Jϑ + Jϕ

(23)
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and the new Poisson brackets

{f, g}1 =
∑
hk

(S−1)kh

(
∂f

∂Jh

∂g

∂ϕk
− ∂f

∂ϕk

∂g

∂Jh

)
. (24)

In the original coordinates(p, q), the symplectic formω is simply written as

ω1 =
∑

i

dKi ∧ dαi, (25)

where the functionsKi(p, q) andαi(p, q), defined by

K1 = 1
4[J 2

1 + (J2 − J3)
2](p, q), K2 = 1

2J2(J1 + J3)(p, q),

K3 = 1
2J3[J1 + J2](p, q), αi = ϕi(p, q),

are considered as functions ofp, q by means of the mapJi = Ji(p, q), ϕi = ϕi(p, q). As a
consequence, a mixed invariant tensor fieldT defined for nondegenerateω byω(T̂ X, Y ) =
ω1(X, Y ) can be constructed.

The tensor field

T =
∑
hk

(
Sh

k dJh ⊗ ∂

∂Jk

+ (S+)kh dϕh ⊗ ∂

∂ϕk

)
(26)

has double degenerate eigenvalues and vanishing Nijenhuis torsion, the last property being
equivalent to the compatibility of the symplectic structuresω andω1.

4.2. A recursion operator in the noncommutative case

The Kepler dynamics has five first integrals given by the components of the angular
momentum and the components of the orthogonal Laplace–Runge–Lenz vector.

In action–angle coordinates(J/ϕ) such first integrals are given by

J1, J2, J3, ϕ1 − ϕ2, ϕ2 − ϕ3.

By using the Delauney action–angle coordinates

I1 = J1 + J2 + J3 ≡ λ1, I2 = J2 + J3 ≡ µ3, I3 = J3 ≡ µ4,

α1 = ϕ1 ≡ χ1, α2 = ϕ2 − ϕ1 ≡ µ5, α3 = ϕ3 − ϕ2 ≡ µ6,

we can construct the invariant torsionless tensor field

T = λ1

(
∂

∂λ1
⊗ dλ1 + ∂

∂χ1
⊗ dχ1

)
+

6∑
α=3

µα

∂

∂µα

⊗ dµα.

5. Conclusion

It has been shown that also in the noncommutative case a criterion of integrability can be
formulated in terms of invariant “semitorsionless” (1,1) tensor field in close analogy with
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the commutative case. Moreover, it has also been shown that in such cases a new invariant
(1,1) tensor field can be constructed with a vanishing Nijenhuis torsion. By using either of
them, sequences of compatible symplectic structures can be constructed.
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